Optionalfields: Partial<OpenAIChatInput> & Partial<AzureOpenAIInput> & BaseLLMParams & { Optionalconfiguration: ClientOptions & LegacyOpenAIInputOptionalazureAzure OpenAI API deployment name to use for completions when making requests to Azure OpenAI. This is the name of the deployment you created in the Azure portal. e.g. "my-openai-deployment" this will be used in the endpoint URL: https://{InstanceName}.openai.azure.com/openai/deployments/my-openai-deployment/
OptionalazureAzure OpenAI API instance name to use when making requests to Azure OpenAI. this is the name of the instance you created in the Azure portal. e.g. "my-openai-instance" this will be used in the endpoint URL: https://my-openai-instance.openai.azure.com/openai/deployments/{DeploymentName}/
OptionalazureAPI key to use when making requests to Azure OpenAI.
OptionalazureAPI version to use when making requests to Azure OpenAI.
OptionalazureCustom endpoint for Azure OpenAI API. This is useful in case you have a deployment in another region. e.g. setting this value to "https://westeurope.api.cognitive.microsoft.com/openai/deployments" will be result in the endpoint URL: https://westeurope.api.cognitive.microsoft.com/openai/deployments/{DeploymentName}/
OptionalcacheOptionalcallbacksThe async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.
Penalizes repeated tokens according to frequency
OptionallogitDictionary used to adjust the probability of specific tokens being generated
OptionalmaxMaximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the model's maximum context size.
OptionalmetadataModel name to use
OptionalmodelHolds any additional parameters that are valid to pass to openai.createCompletion that are not explicitly specified on this class.
Model name to use
Alias for model
Number of completions to generate for each prompt
OptionalnameOptionalopenAIApiAPI key to use when making requests to OpenAI. Defaults to the value of
OPENAI_API_KEY environment variable.
Alias for apiKey
OptionalorganizationOptionalprefixChatGPT messages to pass as a prefix to the prompt
Penalizes repeated tokens
OptionalstopList of stop words to use when generating
Alias for stopSequences
Whether to stream the results or not. Enabling disables tokenUsage reporting
OptionaltagsSampling temperature to use
OptionaltimeoutTimeout to use when making requests to OpenAI.
Total probability mass of tokens to consider at each step
OptionaluserUnique string identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
Whether to print out response text.
Keys that the language model accepts as call options.
Convert a runnable to a tool. Return a new instance of RunnableToolLike
which contains the runnable, name, description and schema.
Optionaldescription?: stringThe description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.
Optionalname?: stringThe name of the tool. If not provided, it will default to the name of the runnable.
The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.
An instance of RunnableToolLike which is a runnable that can be used as a tool.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Array of inputs to each batch call.
Optionaloptions: Partial<OpenAIChatCallOptions> | Partial<OpenAIChatCallOptions>[]Either a single call options object to apply to each batch call or an array for each call.
OptionalbatchOptions: RunnableBatchOptions & { An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set
Optionaloptions: Partial<OpenAIChatCallOptions> | Partial<OpenAIChatCallOptions>[]OptionalbatchOptions: RunnableBatchOptions & { Optionaloptions: Partial<OpenAIChatCallOptions> | Partial<OpenAIChatCallOptions>[]OptionalbatchOptions: RunnableBatchOptionsBind arguments to a Runnable, returning a new Runnable.
A new RunnableBinding that, when invoked, will apply the bound args.
Optionaloptions: string[] | OpenAIChatCallOptionsOptionalcallbacks: CallbacksUse .invoke() instead. Will be removed in 0.2.0. Convenience wrapper for generate that takes in a single string prompt and returns a single string output.
Calls the OpenAI API with retry logic in case of failures.
The request to send to the OpenAI API.
Optionaloptions: OpenAICoreRequestOptionsOptional configuration for the API call.
The response from the OpenAI API.
Optionaloptions: OpenAICoreRequestOptionsRun the LLM on the given prompts and input, handling caching.
Optionaloptions: string[] | OpenAIChatCallOptionsOptionalcallbacks: CallbacksThis method takes prompt values, options, and callbacks, and generates a result based on the prompts.
Prompt values for the LLM.
Optionaloptions: string[] | OpenAIChatCallOptionsOptions for the LLM call.
Optionalcallbacks: CallbacksCallbacks for the LLM call.
An LLMResult based on the prompts.
Get the identifying parameters for the model
Get the parameters used to invoke the model
Optionaloptions: Omit<OpenAIChatCallOptions, This method takes an input and options, and returns a string. It converts the input to a prompt value and generates a result based on the prompt.
Input for the LLM.
Optionaloptions: OpenAIChatCallOptionsOptions for the LLM call.
A string result based on the prompt.
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
A runnable, function, or object whose values are functions or runnables.
A new runnable sequence.
Input text for the prediction.
Optionaloptions: string[] | OpenAIChatCallOptionsOptions for the LLM call.
Optionalcallbacks: CallbacksCallbacks for the LLM call.
A prediction based on the input text.
A list of messages for the prediction.
Optionaloptions: string[] | OpenAIChatCallOptionsOptions for the LLM call.
Optionalcallbacks: CallbacksCallbacks for the LLM call.
A predicted message based on the list of messages.
Stream output in chunks.
Optionaloptions: Partial<OpenAIChatCallOptions>A readable stream that is also an iterable.
Generate a stream of events emitted by the internal steps of the runnable.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).name: string - The name of the runnable that generated the event.run_id: string - Randomly generated ID associated with the given execution of
the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.tags: string[] - The tags of the runnable that generated the event.metadata: Record<string, any> - The metadata of the runnable that generated the event.data: Record<string, any>Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | event | name | chunk | input | output | +======================+==================+=================================+===============================================+=================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_start | some_runnable | | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_stream | some_runnable | "hello world!, goodbye world!" | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_end | some_runnable | | [Document(...)] | "hello world!, goodbye world!" | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.
In addition to the standard events above, users can also dispatch custom events.
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+
Here's an example:
OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";
const slowThing = RunnableLambda.from(async (someInput: string) => {
// Placeholder for some slow operation
await new Promise((resolve) => setTimeout(resolve, 100));
await dispatchCustomEvent("progress_event", {
message: "Finished step 1 of 2",
});
await new Promise((resolve) => setTimeout(resolve, 100));
return "Done";
});
const eventStream = await slowThing.streamEvents("hello world", {
version: "v2",
});
for await (const event of eventStream) {
if (event.event === "on_custom_event") {
console.log(event);
}
}
OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Optionaloptions: Partial<OpenAIChatCallOptions>OptionalstreamOptions: Omit<LogStreamCallbackHandlerInput, "autoClose">Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Bind config to a Runnable, returning a new Runnable.
New configuration parameters to attach to the new runnable.
A new RunnableBinding with a config matching what's passed.
Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
A new RunnableWithFallbacks.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
The object containing the callback functions.
OptionalonCalled after the runnable finishes running, with the Run object.
Optionalconfig: RunnableConfigOptionalonCalled if the runnable throws an error, with the Run object.
Optionalconfig: RunnableConfigOptionalonCalled before the runnable starts running, with the Run object.
Optionalconfig: RunnableConfigAdd retry logic to an existing runnable.
Optionalfields: { OptionalonOptionalstopA new RunnableRetry that, when invoked, will retry according to the parameters.
OptionalwithModel wrapper that returns outputs formatted to match the given schema.
The schema for the structured output. Either as a Zod schema or a valid JSON schema object. If a Zod schema is passed, the returned attributes will be validated, whereas with JSON schema they will not be.
Optionalconfig: StructuredOutputMethodOptions<boolean>A new runnable that calls the LLM with structured output.
StaticdeserializeStaticis
Deprecated
For legacy compatibility. Use ChatOpenAI instead.
Wrapper around OpenAI large language models that use the Chat endpoint.
To use you should have the
openaipackage installed, with theOPENAI_API_KEYenvironment variable set.To use with Azure you should have the
openaipackage installed, with theAZURE_OPENAI_API_KEY,AZURE_OPENAI_API_INSTANCE_NAME,AZURE_OPENAI_API_DEPLOYMENT_NAMEandAZURE_OPENAI_API_VERSIONenvironment variable set.Remarks
Any parameters that are valid to be passed to
openai.createCompletioncan be passed through modelKwargs, even if not explicitly available on this class.Example